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Abstract. The standard solution of the Luttinger model is compared with recent formula- 
tions of the Thirring model used in describing Thirring strings. These models may in turn 
be described by compactified boson models of particular radii. An interesting discrepancy 
is noted between the apparent radius of the bosons in the Luttinger model and those in 
the Thirring model. This difference manifests itself in different conformal weights for the 
fermion fields. We resolve this discrepancy by performing an additional rescaling of the 
Luttinger model bosons. We then examine the enhanced symmetry points that occur in 
the boson theory at particular values of the radii. In particular, for the Thirring model 
with two families of spinors, which corresponds to a conformal theory with central extension 
c = 2, one finds an enhanced SU(3)L x SU(3)R symmetry for certain values of the boson 
radii. This theory is equivalent to the Luttinger model with spin. By examining the response 
functions for the Luttinger model it is found that the point of S U ( ~ ) , X S U ( ~ ) ~  symmetry 
lies on the Luttinger model phase transition lines. 

1. Introduction 

The Luttinger model [ 11 has been used extensively as a model for the one-dimensional 
electron gas. Because of the assumption of linear dispersion, the model is equivalent 
to a number of field theory models for particular choices of the coupling constants. 
In this paper we shall examine the relation between this model and recent treatments 
of the Thirring model utilised in describing Thirring strings [2]. Solutions of both 
models depend upon boson-fermion equivalence in one spatial dimension through 
the construction of collective operators that obey canonical commutation relations. 
The appropriate collective operators for the single-component Thirring model are the 
current operators that arise from the U( l)L x U( l ) R  internal symmetry, and solution 
of the model follows from the treatment of Dell Antonio et a1 [3]. The equivalent 
operators in the spinless Luttinger model are the charge density operators for right- 
and left-moving fermions first used by Tomonaga [4]. Such bosonisation treatments 
yield quadratic Hamiltonians which may be solved exactly. 

A critical role is played by the charge operators in both models. The total Hilbert 
space may be viewed as the tensor product of boson and fermion states. States of a 
particular fermion number and zero boson number may be used as vacua for the 
construction of various boson sectors of the problem, and the contribution to the 
energy from the charge operators will depend upon the charges of these vacua. It is 
this additional contribution to the energy that leads to the equivalence of the Thirring 
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model with compactified boson models, i.e. models where the boson fields are angular 
variables taking values in a circle or torus [2,5]. Level matching then leads to a relation 
between the radius of the boson and the strength of the coupling constant in the 
Thirring model. It is an interesting feature of the resulting boson models that they 
display enhanced internal symmetries for particular values of the boson radii. This is 
most easily seen by examining the energy levels of the system and by noting that 
additional degeneracies exist for particular values of the radii. For the Thirring model 
with a single complex fermion field it has been known for some time that the U( l ) L  x 
u(1)R symmetry may be enhanced to SU(2),X SU(2)R at the boson radius r = (4)”’. 
For the Thirring model with N fermions more recent treatments by Chang and Kumar 
[6] reveal an S0(2N) ,x  SO(2N)R symmetry for the free theory which is broken to a 
U( N)L x U( N)R symmetry for the interacting theory. At the particular values of the 
radii r, = (1/N)’ l2 ,  r 2 .  . . rN = 1 this symmetry is enhanced to an S U ( N +  1),x 
SU( N + l ) R  symmetry where the model becomes equivalent to a Wess-Zumino-Witten 
model with structure group S U ( N +  1) [7]. 

In this paper we examine the relation between the Luttinger model and the above 
models. We are particularly interested in the effective radius of the Luttinger model 
when written in terms of compactified bosons, and whether there is any relation between 
the phase structure of the Luttinger model with spin and the points of enhanced 
symmetry noted above. We find in the spinless case that the apparent boson radius 
of the Luttinger model, which may be used to calculate conformal weights and hence 
correlation functions, does not match the Thirring model radius. We resolve this 
discrepancy by an additional rescaling of the current operators. We then examine the 
case with spin. Since the Luttinger model with spin has two sets of fermions, one for 
spin up and one for spin down, the relevant enhanced symmetry is SU(3), x su(3)R,  
and the theory is conformal invariant with central extension c = 2. We then examine 
the response functions for the Luttinger model which have been treated extensively 
by Solyom [8]. Singularities in the response functions are indicative of instabilities in 
the system which cause the formation of a particular phase as the coupling constants 
are varied at zero temperature. We find the interesting result that the su(3)R x SU(3)L 
enhanced symmetry point when considered in coupling constant space lies on  the 
phase transition lines for the Luttinger model. The paper is organised as follows. In 
section 2 we introduce the Luttinger model and review its standard solution. In section 
3 we examine the Thirring model and its solution as given by Bagger et a1 [2]. We 
examine the spinless case first and then treat the case with spin in section 4. 

2. The spinless Luttinger model 

The Luttinger model [ l ]  is an approximate model for the one-dimensional electron 
gas in a box of length L. We shall denote space and time variables by U and T 
respectively. The free Hamiltonian is obtained by linearising the dispersion relation 
in a small region about the Fermi points, and is given by [4] 

k k 

The operators a correspond to right-moving particles, the b to left-moving particles. 
The corresponding operators in real space will be labelled I,bR and I,bL respectively. 
These operators anticommute with one another and satisfy canonical anticommutation 
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relations among themselves. In this Hamiltonian we have implicitly done the field 
redefinitions $ R +  exp[-ik,(u,T- a)]$R and G L +  exp[-ikF(uFT+ a)]$L which bring 
the Fermi points to the origin. Normal ordering is defined relative to the ground state 
where the left-moving fermion states are filled for k > 0 while the right-moving states 
are filled for k<0 .  

The inverse Fourier transform may be written 

The interaction for the Luttinger model follows from the many-body interaction by 
setting the Fourier transformed couplings to be constants, and by neglecting umklapp 
and large momentum transfer terms [8]. For the spinless model this may be written 
as [91 

H i n t = ( g l / 2 )  I da ( ( L L ( L L ( L ~ ( L L + ( L R ( L R ( L I I R $ R ) + g Z  1 da ( L R ( L R $ t $ L *  (3) 

The first term serves to renormalise the Fermi velocity when the bosonisation treatment 
is envoked, and we shall consider for the remainder of the paper only the g, coupling 
which corresponds to the Thirring coupling. The action for the total Hamiltonian then 
becomes with uF = 1 

Introducing light cone coordinates 

u = r + u  u = r - u  

allows this to be written as 

s = 2  dT d u  [ ~ ( L L ~ , ( L L + ~ ( L R ~ ~ ( L R - ( ~ z / ~ ) ( L ~ : ( L L ( L R ( L R ~  ( 5 )  I 
which corresponds to the action of the Thirring model [2]. The Luttinger model is 
solved by Fourier transforming the density operators pR,L = ( L i , L $ R , L .  The resulting 
operators satisfy the commutation relations 

[pR(k), p R ( - k ’ ) l  = (-kL/2.rr)aA,A [PL(k) ,  pL(-k’)l = (kL/2r)ak,k (6) 
These commutation relations are satisfied due to the presence of the Fermi sea. The 
operators 

dkk = ( 2 ~ / k L ) ’  ’ p R ( k )  dR, = (2T/  k L ) ’ ” p ~ (  - k )  
(7) d = (2T/  kL)’ 2 p ~ (  - k )  dLk = ( 2 r / k L ) ’  2pL(k) 

then obey canonical commutation relations for k > 0. The interacting Hamiltonian 
may be written in terms of the boson operators as 

as long as we neglect zero-mode contributions. The contribution due to zero modes 
may be given as follows. Consider a ground state with particular fermion numbers 
nL, nR.  It is readily shown following the treatment of Haldane [lo] that the energy 
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of this state is ( v / L ) (  nt+ ni). Since it is an eigenstate of the charge operators p0R.L 

we see that the contribution to the energy due to the charges from the free Hamiltonian 
may be written in terms of the operators as ( v / L ) (  piL+piR). The contribution from 
the interaction Hamiltonian may be found by isolating the zero modes in the interaction. 
In terms of operators we may then add a zero-mode contribution yielding a full 
Hamiltonian 

H = 1 k[ d L k d R k  + d l k d L k l +  (g2/2T) k [  d R k d  I k  + d R k d L k  1 
k>O 

+ (r/ L)(  p i L +  P i R )  + (g2/ L)pORpOL. ( 9 )  

If we work in a box of length v and set h = g2/4rr we obtain the Hamiltonian 

~ / 2  = 1 n(df,LdnL + df,RdnR) + 2hn  (dnLdnR+ df,Ldf,R) + $( P ~ L  + P ~ R )  + 2hpOLpoR 
n>O n>O 

(10) 

where n is an integer. This Hamiltonian is readily diagonalised using a Bogoliubov 
transformation. We define new operators according to 

JnL= C ( A ) ~ , , ~ + S ( A ) ~ ~ , ~  J n R =  C ( A ) ~ , , ~ + ~ ( A ) C ~ ; ~  (11) 

where c(A) = cosh(h) and s(A) = sinh(A). The charge operators obey similar relations 
so that the charges are altered when using this transformation. Expressing the 
Hamiltonian in terms of the new operators yields 

and 

tanh(2A) = 2h. (13) 

Hence if we restore the Fermi velocity we see that this Hamiltonian appears to describe 
a free-boson theory with a renormalised Fermi velocity given by GF= vF/cosh(2A). 
The velocity is indeed rescaled since the total momentum given by 

k 7 0  

remains unchanged under the Bogoliubov rotation. This essentially completes the 
solution of the Luttinger model. We remark that one should be cautious in this 
rescaling, however, because the scaling factor is not absorbed in the zero-mode piece 
of the Hamiltonian, which does not depend upon the Fermi velocity. We shall examine 
this point further in the next section. 

3. Relation to field theory 

We saw in the previous section how the Luttinger model could be mapped onto the 
Thimng model. In this section we examine the solution of the Thimng model given 
by Bagger et a1 [2] and its relation to the solution of the previous section. As pointed 
out in [2], one must be careful to distinguish between fields in the interaction picture 
and fully interacting fields in the Heisenberg picture. A Bogoliubov rotation on the 
boson operators may be viewed as relating these two sets of fields, although as we 
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shall see this rotation is not the one that appeared in the previous section. With this 
in mind we shall denote fully interacting operators in the Heisenberg picture with an 
additional tilde, and operators in the interaction picture without the tilde, remembering 
to distinguish them from the hatted operators of the last section. Hence if U denotes 
the unitary operator that implements the Bogoliubov rotation, then for any operator 
d =  UOUt. We use the conventions in [2] and write the action for the Heisenberg 
picture fields as 

This model is conformal invariant with central extension c = 1. The corresponding 
action in the interaction picture may be written without the tildes, and we note that 
the action in (5) corresponds to this action by rescaling IC, + $/(27r)”* and by taking 
h =g2/4.rr. To solve the model it is convenient to bosonise in terms of the currents. 
This theory has a local U( l )L  x U( 1)R symmetry given by 

GL(u, + exp(if(u))$L(u, U )  $RCU, exp(ig(v))$R(u, U )  (16) 

for which the conserved currents are given by 

jL=(l/27r):J:JL: j R  = (1/ 2.n): $k$R : , 

The normal ordering here is with respect to the Fermi fields. The analogous interaction 
picture currents correspond essentially to the density operators of the previous section. 

With respect to the interaction picture currents the Fermi fields behave like free 
fields. Hence the fields have charges - 1 with respect to the interaction picture currents 
and we may write the following commutation relations: 

With respect to the Heisenberg picture currents the fields have different vacuum charges, 
however, which leads to commutation relations of the form 

[JL(u ) ,  $R(U’, U’)] = (-d/2)$R(Ur9 u‘)6(u  - U‘) 
where the parameters U,  b, c, d are to be determined. The currents J’ and J are related 
by a Bogoliubov rotation as 

JR= c ( A ) J ~ + s ( A ) J ~  JL= c ( A ) J , + s ( A ) J ~ .  (20) 

This is essentially a Bogoliubov rotation of the type used in (11) although we have 
not yet fixed the parameter A in this context. The commutation relations for the 
currents are 

[ J ~ ( u ) ,  J~(U’)] = [.TL(u), JJU’)] = (i /2r)t j1(u -U’) 
(21) 

[JR(u), JR(U’)]=[jR(U), j R ( u ’ ) ] = ( i / 2 . r r ) S ’ ( U - u f )  
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where the second relation follows from the fact that the commutation relations are 
invariant under the Bogoliubov rotation. If we substitute ( 2 0 )  into ( 1 9 )  we arrive at 
the consistency relations 

a = c = 2 cosh(A) b = d = 2 sinh(A). ( 2 2 )  

( 2 3 )  

Note that these also satisfy 
b2 = d 2 -  c 2  = 4  

which is equivalent to the condition that CC, transform like a spinor under Lorentz 
transformations as was noted in [ 2 ] .  The relations in ( 2 2 )  and ( 2 3 )  have a one-parameter 
set of solutions given by 

a = c = p + ( l / p )  b = d =  P - ( U P ) .  ( 2 4 )  

We then have the particularly simple relation between p and the Bogoliubov parameter 
A as 

p =eh.  ( 2 5 )  

We shall Fourier analyse the currents as 

which satisfy - -  I -  

[ J m L ,  J-m'LI  = [ J m R ?  J - m ' R I  = (27) 

so that we may define boson operators that obey canonical commutation relations 
according to 

for n > 0. The procedure here is entirely analogous to that of the previous section 
except for the following difference. Due to the use of light cone coordinates when 
implementing the Fourier transform, the left-moving particles here have a filled Fermi 
sea for n < O  just as do the right-moving particles. This accounts for the lack of a 
minus sign in the commutation relations for JnL in ( 2 7 )  when compared to those in (6). 

The Hamiltonian for the Thirring model may be constructed using the energy- 
momentum tensor which is quadratic in the currents. The energy momentum tensor 
for the fully interacting theory is 

e,( U )  = 2 d L (  u p L (  U): 6 R ( u ) = 2 T : j R ( U ) j R ( u ) : .  ( 2 9 )  

The Hamiltonian may then be written quadratically in the currents as 

I?=: du GL(u)+:  du 6,,(u) ( 3 0 )  I I 
so that 

The eigenvalues of the charge operators in this case are - a n L -  b n R - q L  and -bnL-  
unR+qR for JL0 and jR0, respectively. These follow essentially from the relations in 



The Luttinger model 268 1 

(19) except that we have introduced additional vacuum charges qL and q R .  These 
charges determine the boundary conditions of the fermions through the usual bosonisa- 
tion prescription, with qL,R taking the value 0 for fermions with periodic boundary 
conditions and for antiperiodic. 

To complete the solution in terms of the currents one may consider the equation 
of motion corresponding to the action in (15) and compare it to the Heisenberg equation 
of motion obtained using the Hamiltonian in (30). The commutation relations of 
components of the energy-momentum tensor with the fields are obtained following 
the treatment of Dell Antonio et al [3] yielding - -  

[GL(u) ,  GL(ur,  U’)]  = - 2 . r r a : ~ ~ $ ~ : 8 ( u  - ur)+$ia2$L(u’, u ‘ ) a ’ ( u  - u t )  

[ ~ R ( u ) ,  $ L ( u ’ ,  u ’ ) ] = - ~ ~ T ~ : J R $ L : ~ ( u -  v’)+$ib2$L(ur, u ’ ) ~ ’ ( v -  U’) 
(32) [6)R(U), $R(ur, ~ ’ ) ] = - 2 . r r c : ~ R $ R : 6 ( ~ - ~ ’ ) f $ i c 2 $ R ( u ’ ,  U ’ ) s ‘ ( U - U ’ )  

[ 6 ~ (  U), $ ~ ( u ’ ,  U’)] = - 2 ~ d  : ~ L $ R : ~ ( U  - Uf)+fid2$R( U’, U ‘ ) 8 ‘ ( U  - U‘) 

from which one obtains the Heisenberg equation of motion. The result fixes the 
parameter A by the condition 

sinh(A) = L, (33) 

Comparing with (13) one sees that the rotation in (20) which relates the interaction 
picture and Heisenberg picture currents does not correspond to the rotation used in 
solving the Luttinger model. We shall return to this point below. 

The Hamiltonian above has a spectrum that can be made to match that of the 
compactified boson model, which demonstrates the equivalence of these two models. 
The action for the boson is 

where the fields take values in a circle of radius r. The field 4 has an eigenmode 
expansion given by 

4(a, T ) =  40+ P T + ~ L ~ + -  C ( ~ / n ” 2 ) { d n R e x p [ - 2 i n ( ~ - a ) ] + d n L e x p [ - 2 i n ( ~ + a ) ] }  
1 

2 n > O  

i 
2 n > O  -- (1/n1’*){dLR exp[2 in(~-  U ) ]  + dAL exp[2 in (~ -  a)]} .  (35) 

Here P is the total momentum of the field which is canonically conjugate to 4o and 
L is the angular momentum. The wavefunction exp(iPq5,) is required to be single 
valued, which restricts the eigenvalues of P to be P = m/r  where m is an integer. 
Further, one requires that the bosonic field satisfy the boundary conditions 4 ( a + T )  = 
+ ( a ) + 2 m r  where n is an integer, which restricts L to take the values L= nr. The 
Hamiltonian for this system may be written 

H = -  d a  ( c $ ~ + c $ ’ ~ )  
2.rr ‘I 

which becomes 

H / 2 =  m2/4r2+ n 2 r 2 + x  n n(dt,,dnL+dt,,dnR). (37) 
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Examining the expectation value of the Hamiltonian in (31) on various eigenstates of 
the &L,R where qL = q R  = 0, one finds that the spectrum of this Hamiltonian matches 
that in (37)  with n = $ ( n R +  nL) and m = n R -  n L  and p = r. Hence the Thirring model 
with parameter p is equivalent to a boson theory with radius r = p .  Note that the 
winding number n is equal to one half the total charge, while the total momentum 
depends upon the difference between the number of right and left movers, as it should. 
We remark that in terms of the non-interacting charges the Hamiltonian may be written 
as 

H / 2 =  H R +  HL 

with 

The free-fermion theory is seen to correspond to radius r = 1 .  
It is now easy to see the enhanced symmetry which occurs at the particular value 

of the radius r=(i) ' '2 .  At this point the U(l),X u ( 1 ) R  symmetry is enlarged to 
SU(2)L x SU(2)R.  Let us label the various vacua in the boson sectors by their charges 
JOR, JOL. Then to illustrate the symmetry we may examine the following nine states 
which are all degenerate in energy and form the carrier space for the adjoint representa- 
tion of su(2)R SU(2)L [51 

d;Ld:RIO, 0) l*2,0) IO, *a  
d:RI1 ,  l )  diR1-1, - 1 )  diLI1, -1) d;LI-l,1). 

(39) 

These states are all found to have energy 2 at the value of r = ( + ) I  ', illustrating the 
enhanced symmetry. 

Up until now we have been considering the fully interacting fields in the action ir. 
(15) .  We now consider what happens to an action written in terms of the interaction 
picture fields. The action is 

s=- d u  d7 (i$:d,$L+i$Rd,$R- h $ i $ L $ k $ R ) .  (40) 
i7 l I  

In this case it is easiest to appeal directly to the bosonisation prescription and the 
treatment in [2]. We suppose that the kinetic term alone corresponds to a compactified 
boson model of radius 1 .  Both the interaction term and the kinetic term bosonise to 
kinetic boson actions so that the equivalent boson action is 

S = ( 1 / 2 ~ ) ( 1 + 2 h )  d u  dTd,c,bd,c,b. I 
Hence the boson fields must be rescaled by a factor ( 1  + 2/1)' '~ .  Since we started with 
a free-fermion theory corresponding to radius 1 we recognise this as the new radius 
so that we have the condition found in [2,11] 

r,, = e" = ( 1  + 2h) ' I 7  (41) 

which gives the effective boson radius for the action in (40). Equating this with the 
expression for rh obtained using (33) ,  we see that the two couplings are related by the 
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scaling 6 / h  = l / r h .  This amounts to a scaling of the currents, as may be seen from 
the equation of motion 

= -27rih:JRILL (42) 

whereby substituting for h and rescaling the current by j =  rhJ gives the Heisenberg 
picture equation of motion. Thus a rescaling of the currents (or  equivalently the 4 
field) effectively changes the radius from 1 to rh. 

Having solved the Thirring model, we may now compare the solution presented in 
this section with that of the previous section. Since the Luttinger model may be mapped 
onto the Thirring model using the assumptions of the previous section, i.e. both models 
have the same action written in terms of interaction-picture fields, the Luttinger model 
solution should be equivalent to a free boson of radius ri, = eh = (1  +2h)’/*.  If we, 
however, use the Bogoliubov rotation used to solve the Luttinger model we obtain the 
condition r, = eh where tanh(2A) = 2h. Solving for the radius yields the condition 

r, = (:‘:fi)“ - (43) 

which does not match the Thirring model result. 
The discrepancy between these two lies in the renormalisation of the Hamiltonian 

in (12) that is done after the Bogoliubov transformation. This may be resolved as 
follows. Suppose that rather than follow the condensed matter prescription of absorbing 
the scaling factor l/cosh(2A) into the Fermi velocity, we rescale the currents instead. 
This amounts to rescaling d, d A +  [cosh(2A)]”’d, [cosh(2A)]l”dT and p0L.R- 
[ ~ o s h ( 2 A ) ] l ” p , ~ , ~ .  From the discussion above we see that the effect of this rescaling 
is to change the radius r, by the additional scaling factor [cosh(2A)]-’” to give the 
new radius 

rh = rl[cosh(2A)]~’”. 

Substituting the value from (13) yields 

= (1 + 2h)”?  (44) 
which matches the interaction-picture field theory result. We may make several remarks 
at  this point, the first being that the rotation of the previous section which diagonalises 
the Hamiltonian is not the one that takes us between the interaction picture and  the 
Heisenberg picture in the sense of Bagger er al, in fact it takes us only part of the way 
there, the rest being accomplished by a further rescaling of the currents. Secondly, if 
we choose the condensed matter theory approach and rescale the Fermi velocity instead, 
we have a theory with a new light cone and  different radius given by r, instead of rh. 
Bagger er a1 point out, however, that a simple rescaling of the currents cannot change 
the physics, and  hence that the radius r/ is in some sense fictitious. Nevertheless, what 
we conclude from this treatment is that a theory with radius r h  looks like a theory 
where the Fermi velocity is rescaled and the radius appears as a different radius r,. 
With this latter treatment the conformal weights of the fields will appear completely 
different, and  this will be reflected in completely different correlation functions. 

To further check this we may compute the correlation functions of the Fermi fields 
directly. Since the model is conformal invariant, it is easiest to use conformal field 
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theory results [12]. All that is required to compute the correlation functions are the 
conformal weights of the fields. From the relations in (32) we immediately see that 
the conformal weights of the field l(lL are ( a 2 / 8 ,  b2/8) and those of (CIR are (b2/8, a2/8).  
Once the conformal weights have been determined it is simple to write down the 
two-point functions. Taking a + ia and setting z = &T + ia yields 

(+L(z,  f)+L(zt, 5’)) = (z - Z ~ ) - ( l / 8 ) [ ~ + ( l / ~ ) l ( f  - ~ ! ) - ( ~ / ~ ) [ P - ( I / P ) I  

= ( z  - Z~)-COSh(A)2/2 ( - f’) -sinh(h )’/2 

( + ; c Z ,  z ) + ~ ( ~ ’ ,  2 ’ ) )  = ( Z - - ~ ) - ( I / ~ ) [ P + ( I / P ) I  ( z  - z y l / 8 ) [ P - ( l / P l l  (45) 

- - (5- f!)-cosh(h)‘/Z ( - z!) -s inh(h 12/2 

With the Bogoliubov transformation parameter fixed by (13) the results match known 
correlation functions of the Luttinger model as in [lo], where the complex coordinate 
z is obtained using the renormalised Fermi velocity fiF. For the Thirring model solution 
in the interaction picture, however, the complex coordinate is fixed by the original 
Fermi velocity and the conformal weights of the fields are fixed by the condition in 
(41). We see that the difference in conformal weights between the two solutions is 
accompanied by a change in the Fermi velocity, which is rescaled from vF to fiF.  

4. The Luttinger model with spin 

The above techniques may be used for the case of particles with spin as well. In this 
case the fields have an additional spin index which we label i where i = 1 corresponds 
to spin up and i = 2 corresponds to spin down. The resulting multicomponent model 
has an action in the interaction picture given by 

This model is again exactly solvable using bosonisation techniques as in [6,8], and 
with the neglect of the term involving g, is conformal invariant with central extension 
c = 2. Similar to the case of the spinless Luttinger model, the interacting Hamiltonian 
in this approximation may be written in boson form as 

where we take h, to be symmetric. The Hamiltonian may be separated into spin density 
and charge density parts using a canonical transformation U‘ which acts on the currents 
to give new currents defined by 

(48) Pi = ( oJ)i 
where the matrix 0 is given by 

o=-( 1 1 1  ). 
2”* -1 1 (49) 

We shall label the new boson operators by d i.e. 
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d = 1 Oijd,. 
I 

Here d ;  corresponds to the usual charge density wave operators and d ;  to the spin 
density wave operators in the treatment of Solyom [ 81. This transformation diagonalises 
the matrix h,. We then have the diagonal matrix 

D = OhOT (51)  

The two spin pieces may now be diagonalised separately using Bogoliubov rotations 
with the parameters given by 

tanh(2Al) = 2(hl I + hI2)  tanh(2AJ = 2 ( h l l  - h I z )  (54) 

where the boson radii are given by rlI = e”’ and r,? = e”’. The Hamiltonian is then 

H / 2 = 1  [l/cosh(2A,)]H, 
I 

(55 )  

Note that the spin density ( i  = 2 )  and charge density ( i  = 1) sectors have different 
renormalised propagation velocities due to the different Bogoliubov rotations in (54). 

On the other hand, we have the interaction picture Thirring model solution of the 
same action in (46) with g,, = O  in terms of two bosons where the radii are given by 

rh = [ 1 + 2( h ,  + h12)]”2 rh2=[1+2(hlI-  h12)]’” (56) 

and the Fermi velocity is not renormalised. As in (38),  the Hamiltonian may be written 
in terms of the non-interacting currents as 

H / 2  = HL+ HR 

with 

We shall denote the eigenvalues of the charge operators JoL, and JOR, by the vectors 
-nL-qL and -nR+ q R ,  respectively. We restrict to the same boundary conditions for 
all the fermions so that q R ,  = qLl = q. The values of q are 0, $, corresponding to periodic 
or antiperiodic boundary conditions for the fermions. Further, we let en/(21’2) be the 
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ith row vector of the matrix 0 and restrict to the case where rhl  = r and r h Z =  1. Then 
the above may be rewritten as 

Examination of the relations in  (58) reveals additional degeneracies in  states at the 
kalues r = (:)I ' which correspond to various representations of S U ( 3 ) L ~  SU(3)R.  For 
exanple, there are eight states at energy H ,  = 1, HR = 0 corresponding to the adjoint 
representation of SU(3).  We note that unlike the spinless case, the symmetry here 
appears to mix states of different q values and hence states with different fermion 
boundary conditions. Further details may be found in [6]. 

We now examine the relation of these enhanced symmetries to the phase structure 
of the system. At zero temperature the system has several phases that are a function 
of the coupling constants, and the phase portrait is determined from the response 
functions, which are as follows. They are all of the form 

(59) 
where T denotes time ordering. For the charge density wave response function N we 
have 

0 = ( L l l  $RI  + + ; 2 ( L R 2 .  (60) 

0 = * L * R 2  * ( L L * R l .  (61) 

0 = *L1 (LR2 + (LRl  (CIE (62) 

0 = ( L I L ~ + R Z -  ( L R I ~ J L Z  (63) 

0, = (LLt@R,. (64) 
The second subscript here labels the spin. The phase properties of the system are 
determined by these functions; the particular phase that the system is in at a particular 
value of the coupling constants is determined by which response function is singular 
and has the highest inverse power behaviour in ICT - ~ ' 1 .  In computing these functions 
only one term need be computed to show the singular behaviour. The terms chosen are 

R = (T[ OL( U, u)O(  U', U')]) 

For the spin density wave response function ,y 

For the singlet superconductor response function A, 

while for the triplet superconductor response function AI 

N ( u ,  U )  -(T[(LL(u, U)(LRI(U, U ) ( L ; l , ( O ,  O ) ( L L , ( O , O ) l )  

x(u, u ) - ( T [ $ L Z ( U ,  U ) ( L R l ( %  u)(LLl(o,  O ) ( L L 2 ( 0 ,  0)l) 
As(u, u ) - ( T [ ( L L Z ( U ,  U ) ( L R I ( U ,  u)$RI (o~  0)$:2(0, 0)) 

A t ( u ,  u ) - ( T [ $ L l ( u ,  u ) $ R I ( U ,  u)@kl(o,  o)(L;l(o, 

(65) 

These response functions can be computed using bosonisation. In  doing so it is 
necessary to do  the transformation U'  first, followed by the appropriate Bogoliubov 
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Figure 1. The phase structure of the Luttinger-Thirring model is seen here in relation to 
the enhanced internal symmetry. The diagonal lines intersecting the origin are  the phase 
transition lines. The  dot at ( - f )  represents the point of SU(3)LxSU(3), symmetry calcu- 
lated using the interaction picture Thirring model solution. 

which agrees with the result in [8]. Here the subscripts on the coordinates refer to the 
different light cone coordinates in the charge density and  spin density sectors which 
are obtained when using the Luttinger model solution, i.e. U ,  = fiFIT+im with &, = 
uF[l - 4 ( h , , + h , 2 ) 2 ] ” 2  etc. For the Thirring model solution there is no light cone 
renormalisation, and these I ‘0 coordinates coincide. From these functions it is easy 
to see the phase portrait. T h t  phase transition lines occur for h , ,  = h , ,  and h , ,  = - h I 2  
independent of which solution is used. Comparing with the above results, we see that 
the point at which the enhanced SU(3),x SU(3)R symmetry occurs in Z f ’  lies on these 
phase transition lines at the value h , ,  + h I 2  = - $ .  The result is shown in figure 1. We 
remark that it would be of interest to examine renormalisation group studies of actions 
which break the conformal invariance and  have the c = 2 theory as fixed point. This 
might reveal additional information regarding the enhanced symmetry point and  its 
possible relation to the phase structure. 

5. Conclusion 

We have seen how the Luttinger model may be mapped onto the Thirring model and  
the model for compactified bosons taking values in a torus. These latter models have 
peculiar enhanced symmetries for particular values of the radii that translate to 
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enhanced symmetries for the Luttinger model at particular values of the couplings. 
For the Luttinger model with spin the relevant symmetry enhanced symmetry is 
SU(3)Lx SU(3)R, and the symmetry point is found to lie on the phase transition lines. 
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